H. L. Matile no 10790- en utmaning, del 3.

Del 3.

När själva verkdelen är klar är det dags för kronografen och uppdraget.
På slutet skriver Eric om Matiles intressanta historia och om testningen av detta verk med mera.

Alla delarna till visarställningen.

Alla delarna till kronografen.

Generellt när jag jobbar med kronografer brukar jag börja med att sätta pelarhjulet på plats. Därefter de delar som gör att pelarhjulet rör sig – spärr och start/stopparm t. ex. Erics kronograf är ju av en enkel sort men det krävs ändå att man sätter de olika delarna i rätt ordning annars blockerar de varandra och man får backa några steg. Allteftersom delarna hamnar på sina platser smörjer jag funktionsytorna som annars kan vara dolda. Höga tryck – fett, små rörelser utan större tryck får olja.
Bildserien nedan visar hur varje del hamnar på respektive plats.
Konstigt nog finns ingen svensk ordlista över urmakeritermer, delars namn etc, så en del namn har jag själv hittat på.

Alla kronografens samt uppdragets delar på plats!

Här testar jag så att allt fungerar som det ska. Start – stopp – nollställning.

Pelarhjulet är ”hjärnan” i en kronograf. Hjulet har 18 tänder i botten. Varje tryck på knappen matar fram en tand. Här ser man hur nollställararmen vilar på en av kammarna. Armen för blockering av sekundräknaren saknas här. Kronografen går.

Kronografen stoppad. Nollställarmen vilar fortfarande på en kam. Användaren kan läsa av den uppmätta tiden. Kronografen har tre lägen: start – stopp – nollställning. Varje kam motsvarar två tryck på knappen och mellanrummet ett tryck. Hjulet har 18 tänder = 6 kammar x 2 + 6 mellanrum x1 = 18 tryck för ett varv på hjulet.

Här har nollställararmen fallit ned i en av öppningarna. Nu är sekundräknaren nollställd. Nästa tryck på knappen kommer att starta kronografen och lyfta nollställararmen upp på nästa kam.

Timelapsefilm med de olika funktionerna.

Verket monterat i boetten.

Allt klart!

Här kommer Erics intressanta text om alla farbröder Matile och om detta ur specifikt:

 

Henri Louis Matile kronometerkronograf 10790

Henri-Louis Matile är ett namn som tycks ha gått i arv i minst fyra generationer. Henri-Louis Matile född år 1757, okänt dödsår, fick en son 1790 som han också döpte till Henri-Louis, tyvärr också med okänt dödsår. Henri-Louis född 1790 födde i sin tur en egen son år 1817 som också gavs samma namn och som dog 1893. Henri-Louis Matile född 1817 födde i sin tur en son år 1843 som traditionsenligt gavs samma namn och som dog 1925. Åtminstone de två senare var urmakare verksamma i schweiziska Le Locle under andra halvan av 1800-talet. När farfarn, som troligen inte var urmakare, fortfarande var vid liv tycks fadern ha kallat sin verksamhet ”H. L. Matile fils”. Efter farfarns död döptes verksamheten om till ”H. L. Matile” utan ”fils”, som alltså betyder son på franska. Exempel på detta går att se i resultaten från precisionstävlingarna på observatoriet i Neuchâtel från 1868 och 1869. År 1870 förekommer både namnen H.-L. Matile fils och H.-Louis Matile et fils i resultatlistan vilket tyder på att fadern och sonen arbetade ihop och att den yngsta Henri-Louis sannolikt gick i lärlingstjänst hos sin far. I observatoriets resultatlistor mellan 1877-1879 syns H.-L. Matile och H.-L. Matile fils (H.-L. Matile Son år 1877) som konkurrenter med olika serienummerserier, dock med viss överlappning. För ur gjorda runt 1870-1880 är det således mycket svårt, om inte omöjligt, att bedöma vilken H. L. Matile som var ansvarig och i vilken grad de då samarbetade. Som exempel hade de båda urverksamheter listade i Le Locle enligt adresslistan, Indicateur de La Chaux-de-Fonds et du Locle, från 1877-1878 (under kategorin fabricants et négociants). Sonens verksamhet med inriktning på komplicerade ur var listad på adressen ”de Couronne 316” och faderns verksamhet på ”Rue de France 287”. Troligen arbetade de mycket nära och det är möjligt att verksamheternas konsoliderades någon gång runt 1883. Efter 1882 finns nämligen endast faderns urverksamhet i adresslistan. Sonen sysslade också med politik och var prefekt i Boudry – som ligger sydväst om Neuchâtel vid Neuchâtelsjön – i adresslistan från 1883. Han tycks ha hållit denna position till minst 1902, då ytterligare en referens till honom som prefekt går att hitta.

Oavsett vilken eller vilka Henri-Louis Matile som låg bakom, var företaget H. L. Matile känt för sina komplicerade ur och kronometrar av mycket hög kvalitet. En stor del av produktionen gick på export till USA där importföretaget Mathey Brothers, Mathez & Co under en tid var generalagent.

Den amerikanska marknaden var onekligen mycket viktig för H. L. Matile och vid världens första officiella världsutställning i USA, Centennial International Exhibition 1876 i Philadelphia, valde företaget att storsatsa. Vid utställningen ställde företaget ut fem komplicerade ur och en fickkronometer, samtliga med gångcertifikat från det schweiziska observatoriet i Neuchâtel.

Värt att nämna är att även komplicerade ur från Charles Henry Meylan ställdes ut i samband med uren från H. L. Matile. C. H. Meylans komplicerade ur tillverkades nämligen av H. L. Matile då.
H. L. Matiles främsta och mest komplicerade utställningsur, troligen serienummer 10697, beskrivs i Joseph H. Wilsons bok ,”The masterpieces of the Centennial international exhibition”, som

a piece of workmanship that presents the most extraordinary handiwork in the best known instance of its representation, it being certainly the most intricate watch ever exhibited in this country” och

this watch may be ranked as one of the most remarkable exhibits in the Exhibition, combining within itself evidences of profound mechanical and mathematical knowledge, exact and experienced skill of hand and eye, and exceedingly great patience, industry and ingenuity.”

Uret i fråga tog två år att tillverka och hade minutrepeter, evighetskalender, 1/5-dels splitsekundkronograf, 1/5-dels hoppande sekund och månfasvisning. Trots alla komplikationer, var inte uret mycket större än ett vanligt fickur och som nämnts ovan hade det till och med ett gångcertifikat från observatoriet i Neuchâtel.
H. L. Matiles ur gjorde verkligen intryck i USA och det superkomplicerade uret beskrevs i den amerikanska dagstidningen Washington Times som ”perhaps the most wonderful watch in the world”. Den kände och humoristiske författaren Mark Twain (Samuel Langhorne Clemens) skriver i artikeln att uret, med alla sina funktioner, troligen vet mer än den genomsnittlige amerikanske väljaren och att uret är mer likt en människa än något ur han skådat tidigare. Twain spekulerar kring vad som skulle hända om kugghjul lades till eller togs bort från uret. Han konstaterar att om uret gavs ytterligare hjul så hade det nog lärt sig att både läsa och skriva och om hjul togs bort så hade det nog ändå varit mer intelligent än de som styr landet.

Utöver tillverkningen av komplicerade ur lades också en stor vikt vid precision och vid observatoriecertifiering av ur. I nästan 20 år tävlade företaget på observatoriet i Neuchâtel. Första gången var 1868 och sista gången var 1883 och under dessa år vann företaget H. L. Matile många priser. Ett bra exempel på detta är år 1881, när H. L. Matile vann observatoriets stora pris för tillverkare. Priset innefattade utöver den stora äran också en prissumma på 200 franc, vilket då var en ansenlig summa. Det delades ut baserat på en tillverkares kronometrars genomsnittliga precision i testningsklasserna A, B och C, förutsatt att denna ställde upp med minst 12 kronometrar det året. Priset delades inte ut alla år med anledning av de strikta gränsvärdena. Många kronometrar, även sådana som med god marginal klarade kronometertestningen på observatoriet i övrigt, presterade inte väl nog för priset, vilket alltså påverkade företagets genomsnitt negativt. Majoriteten av tillverkare hade heller inte kapaciteten eller var intresserade av att ställa upp med fler än 12 kronometrar ett år.
År 1881 deltog företaget H. L. Matile med hela 31 kronometrar, vilket var klart flest av alla deltagare. Troligen bar fadern Henri-Louis Matile ansvaret för tillverkningen. Tillsammans med Borel & Courvoisier, vilka deltog med 12 kronometrar, kvalificerade de sig alltså för att tävla om det stora priset. Företagets 31 kronometrar uppvisade generellt mycket god precision, men i en av parametrarna som bedömdes, skillnaden mellan den högsta och lägsta uppmätta gången, översteg kronometrarnas snitt det tillåtna gränsvärdet och företaget borde således ha diskvalificerats från priset. Intressant är att även konkurrenten Borel & Courvoisiers kronometrar föll på samma parameter och att H. L. Matiles kronometrar föregående år, 1880, också gjorde det. Detta ledde till att observatoriets chef, Dr. Adolph Hirsch, diskuterade parametern i observatoriets årliga rapport. Han konstaterade dock att gränsvärdet inte borde ändras.

Trots parametern beslutade sig den ansvariga styrelsen för att Henri-Louis Matile skulle tilldelas observatoriets stora pris. Det ovanliga undantaget motiverades av att 9 av företagets 31 kronometrar var kronografer och att 10 av kronometrarna testades i testningsklassen B, observatoriets svåraste för fickkronometrar. Kronografer uppvisade i regel sämre resultat i tävlingarna och testningen i klass B varade i 6 veckor och urverken testades i värmeugn, kylskåp och i 5 olika positioner, något som med all säkerhet ökade skillnaden mellan ett urverks högsta och lägsta uppmätta gång. Det fanns inte heller några tvivel om att de 12 bäst presterande av de 31 kronometrarna skulle ha uppfyllt de krav som ställdes för priset. Hade H. L. Matile valt att endast ställa upp med sina tolv bästa hade de alltså troligen vunnit priset. Styrelsen ville inte straffa H. L. Matile för andra året i rad för att ha ställt upp med ett stort antal kronometrar i tävlingen.

En av kronometrarna H. L. Matile ställde upp med i tävlingen 1881 var serienummer 10790, en kronometerkronograf av bästa sort med 1/5-dels sekund. Baserat på en delvis bortfilad stämpel kan råverket troligen attribueras till LeCoultre, Borgeaud & Cie, men det är som ofta svårt att säga med säkerhet. Totalt klarade 29 kronometrar den mycket strikta testningen i klass B, som alltså också var en tävling, och nummer 10790 var en av 6 kronografer att klara testningen. Inte nog med att den klarade testningen, kronometern kom dessutom på tredje plats och var den bästa kronografen att testas det året. Placeringen i de olika tävlingsklasserna baserades på urets genomsnittliga gångvariation, alltså skillnaden i gångavvikelse, och ju lägre värde desto bättre. Med en genomsnittlig gångvariation på 0,28s kom alltså 10790 på tredje plats i klass B. Den bästa kronometern i klassen det året uppvisade en genomsnittlig gångvariation på 0,25s och den sämsta på 0,97s.

Trots den höga placeringen vann inte kronometern något av de priser som gavs till enskilda kronometrar. Faktum är att samtliga i topp tre inte gavs pris av olika anledningar. Endast kronometrar från kantonen Neuchâtel gavs priser, så en uteslöts på grund av detta. Många kronometrar, exempelvis nummer 10790, fick ej pris på grund av att de inte uppfyllde något av villkoren gällande gränsvärden för pris. Vad gäller kronometer 10790, som alltså generellt uppvisade absolut topprecision, berodde det på ett av positionstesterna. Enligt artikel 9 i testningsreglerna får prisvinnande ur ej uppvisa en skillnad i gång på över 5s mellan positionen där uret står upprätt med kronan uppåt och positionerna där uret står upprätt med kronan till vänster eller till höger. H. L. Matile 10790 uppvisade en skillnad mellan positionen där uret står upprätt med kronan uppåt och positionen där uret står upprätt med kronan till höger på 6,41s.

Reglören som bar ansvaret för H. L. Matiles samtliga kronometrar 1881, och många av konkurrenternas, var Fritz Borgstedt, också var verksam i Le Locle. Fritz Borgstedt var en av de mest produktiva reglörerna i slutet av 1800-talet och vann många observatoriepriser.
Borgstedt var son till en mjölnare och föddes 1826 i den tyska staden Werther i Nordrhein-Westfalen. Han lärde sig urmakeriyrket i tidig ålder hos en urmakare i sin hemstad och arbetade därefter som assistent till en hovurmakare i Detmold. Som assistent fick han vidareutbildning som urmakare och konstruerade på så vis en fickkronometer från grunden. Borgstedt flyttade till Schweiz redan 1851 i hopp om ytterligare urmakeriutbildning. I La Chaux-de-Fonds arbetade han under många år med tillverkning av högkvalitativa gångpartier. När arbetet i staden tröt flyttade Borgstedt istället till den närliggande staden Le Locle, där han fick arbete som reglör. Under sitt arbete med finjustering av ur var han en av de första att praktiskt applicera Edouard Philips teorier om balansspiraler och ändkurvor. Balansspiralen i kronometer 10790 har tätare innervarv istället för en innerkurva. Kanske är just detta ett exempel på sådan teori i praktik. Fritz Borgstedt dog den 13 november 1892 och hyllades i tysk urmakarpress för sina stora framgångar utomlands.

Idag är det relativt svårt att hitta information om företaget Henri-Louis Matile, personerna bakom och de ur som tillverkades. Trots framgångar på den amerikanska marknaden och vid observatoriet i Neuchâtel tycks H. L. Matile ha upphört någon gång runt 1890. Sista gången företaget nämndes i adresslistan Indicateur de La Chaux-de-Fonds et du Locle var 1889. Det går idag endast att spekulera i vad som hände. Som nämnts tidigare tillverkade företaget komplicerade ur för C. H. Meylan och kanske växte denna del av verksamheten sig så stor att detta blev företagets fokus? Kanske valde sonen att fokusera på sin politiska karriär när fadern blev till åren?

Källförteckning:

Allgemeines Journal der Uhrmacherkunst, band 17 1892, tillgänglig:
https://digital.slub-dresden.de/werkansicht/dlf/104945/446/0/

Bulletin de la Société des Sciences Naturelles de Neuchâtel, band 8, 9, 10, 11, 12, 13 och 14, tillgängliga: https://www.e-periodica.ch/digbib/volumes?UID=bsn-001

Dictionnaire des Horlogers, De Mabelly à Muzi:

http://fr.worldtempus.com/article/industrie-news/economie/dictionnaire-des-horlogers-de-mabelly-a-muzi-15634.html

Favre-Perret: Report on Horology, Philadelphia Exhibition 1876, tillgänglig:

http://www.watkinsr.id.au/Favre.pdf

Francis A. Walker. International Exhibition, 1876: Reports and awards. Groups I-XXXVI and collective exhibits, sidor 122-123 och 158.

Henri-Louis Matiles släktträd, tillgängligt: www.familysearch.org/tree/pedigree/landscape/MJR7-MQW

Indicateur de La Chaux-de-Fonds et du Locle, år 1877-1878, 1880-1882, 1883, 1889, tillgängliga:

https://doc.rero.ch/record/323375

Joseph M. Wilson. The masterpieces of the Centennial international exhibition, volym 3, sidor 245-248, tillgänglig: https://archive.org/details/masterpiecesofc03shin

L’Impartial, 1902, No 6490, XXIIme Annee.

Scientific American, June 2 1877, sida 342.

The Jewelers’ Circular and Horological Review, volym 15, 1884, sida XIV.

The Dalles weekly chronicle., December 29, 1900, PART 2, Image 3, tillgänlig:
https://oregonnews.uoregon.edu/lccn/2003260222/1900-12-29/ed-1/seq-3/

The Jewelers’ Circular and Horological Review, 1882, volym XIII, sidor 348, 361-363, tillgänglig:

https://archive.org/details/PO60176Vol13/mode/2up

H. L. Matile no 10790- en utmaning, del 2.

Del 2

När allt var klart med att få verket att fungera i boetten var det dags ägna själva verket uppmärksamhet och få det att fungera.

När jag bestämde mig för att laga klockan hade jag upptäckt några smågrejer som jag tänkte kolla extra. Det var dels nollställningen av kronografen som inte fungerade till 100% och minutvisaren med sin konstiga tapp som jag tänkte börja med.

Jag valde att istället för att borra ett hål i centrumaxeln att svarva en tapp. Sedan tänkte jag mig ett rör med en tapp för visaren. Min tanke var att inte skada centrumaxeln mer. Om något skulle gå snett, hålet inte hamnade rätt eller att axeln skulle spricka (på samma sätt som hänt nu), var det bättre med ett rör som är lättare att göra nytt än en ny centrumaxel. Det går ju att laborera med hållfastheten på detta sätt. Om man sparar ännu mer av originalaxeln och gör röret tunnare, man kan ju till och med göra en brottanvisning för att den mer lättersatta delen ska gå sönder om en olycka är framme eller om det är en väldigt känslig och delikat del man repararerar. Så får man hoppas att framtidens användare är rädda om klockan.
Något som jag aldrig sett förut är att minutvisaren är överst, sedan kommer sekundräknaren och underst timvisaren.
En kommentar om den tidigare reparationen.
Man ser hur viktigt det är att vara noggrann när man borrar in en tapp. Om man inte centrerar borret blir hålet snett, om man dessutom inte gör tappen rätt som ska in i hålet t.ex. för konisk eller för stor spricker det lätt. Man får tänka efter så att man tar med så många parametrar som möjligt när man planerar sitt arbete. Om du till exempel borrar med ett hårdmetallborr i en glashård axel utan att anlöpa, då blir ju området vid hålet oerhört sprött och en presspassning skulle spräcka axeln.

Vidare med resten av renoveringen.

Efter rengöringen kontrollerar jag alltid delarna så att det verkligen är och ser rent ut. Kollar stenarnas funktionsytor efter oljerester  – använder en putspinne vid behov, kollar ställen där jag vet att det brukar vara svårt att rengöra och det ofta är smutsigt till exempel uppdrag, fjäderhus och liknande.  Därefter brukar jag epilamisera alla stenhål, gånghjul och hake och andra lagerställen samt vid uppdraget. Jag gör det för att vara säker på att olja och fett ligger kvar där jag vill att det ska vara.
Här följer en liten genomgång av alla vackra delar och sammansättningen av urverket. Kronografdelen tar jag sist.

I nästa del vänder jag på steken och koncentrerar mig på tavelsidan och kronografen.

H. L. Matile no 10790- en utmaning, del 1.

Eric bad mig att undersöka om jag kunde sätta in ett fint urverk i en boett. Han hade återigen kommit över ett fint urverk som slaktats på sin boett. Han hade med sig några visningsboetter som kanske kunde passa till verket.
Verket var ett observatorietestat kronometerverk dessutom utrustat med kronograf med 1/5-dels sekund. (Två begrepp som ofta förväxlas, kronometer och kronograf – här har vi båda.)
Passade på att ta några bilder av verket innan jag satte igång.
Klicka på småbilderna för att se större.

Börjar med att ta bort balansen så att ingen olycka sker med den. Kontrollerar om jag kan se något allvarligt fel. Verket fungerade när jag drog upp den lite, det enda jag fann var att nollställningen av kronografen gick lite trögt. Tippade på att det nog bara var smuts som gjorde att det gick trögt. Minutvisaren hade också en konstig och skev tapp. Min erfarenhet av så här gamla kronografer är minst sagt begränsad, jag visste helt enkelt inte hur det brukar se ut.
Men kvalitén på verket var ju någonting alldeles extra!
Sicken kvalité!

Mitt största bekymmer – hur var detta tänkt?

På bilden ovan ser man den avbrutna uppdragsaxeln samt under den en öppning med en arm med ett hål i. Här sker start – stopp – nollställning av kronografen.
Det krävs ganska stor kraft för att trycka fram kronografens funktioner. Jag visste inte hur kopplingen mellan denna öppning och tryckknappen hade sett ut från början. Tyckte att proportionerna inte stämde riktigt med vad jag var van vid från tidigare reparationer.
Skulle detta fungera även i den nya boetten?
Såg inga märken på verkets kant efter någon ytterligare konstruktion. Såg framför mig en krona med tryckknapp för kronografens funktioner, mellan verket och kronan ett rör som för över kraften från tryckknappen till kronografen, sedan någon form av tapp/axel som trycker mot start/stopparmen. Jag hade en oro för att den stora kraften som krävs för att mata fram kronografen skulle bli för ensidig belastning för kronan.
Framtiden får utvisa om min oro är berättigad.
Det var värt att försöka få detta att fungera – en utmaning som passade mig!

En av boetterna skulle fungera. Prov och kontroll.

Fastnade för en av boetterna. Den var tillräckligt tjock för att verket skulle passa i höjd, den var något för stor så att jag skulle bli tvungen att tillverka en verkring, då kunde jag kontrollera så att verket hamnade på rätt plats samt att jag fick lite extra utrymme mellan verk och boett om jag skulle behöva göra någon extra konstruktion för att få kronografen att fungera. Kronröret hade även det generösa mått för att få plats med extra rör etc,
Tog kontakt med Eric och berättade att jag trodde på projektet. Det borde gå att få det hela att fungera!

Nu var det dags att noggrant mäta upp boett och verk för att göra en ritning på verkringen och sedan tillverka ringen och få verket att fungera i boetten.

Ja det var många åtgärder och många delar som ska samverka för att det ska fungera.
Men nu är det mesta klart rörande boett, verkring och kronans funktioner.
I nästa del kommer jag beskriva reparationen av verket och hur det fungerar.

L. Leroy 19964 – fick nytt liv i uppdrag

Vad har vi här?
Ett ganska enkelt armbandsur med fläckig, fyrkantig boett, där det satt ett äldre sladdrigt brunt läderarmband.
Det var något fel i visarställningen men det gick hjälpligt att dra upp fjädern.

Vid en närmare titt stod det L. Leroy & Cie på urtavlan. Lät bekant.

Lyfte av visarna och tog bort de två skruvarna som håller tavlan för att inspektera.

(Det jag först tyckte var ett gammalt tråkigt band visade sig vara originalbandet. Bandet är sytt direkt på klockan!)

Så här såg det ut under tavlan.
Det var inte så konstigt att det inte gick att ställa visarna!
Någon hade försökt att tillverka en ny visarställarm, men den såg mest ut som en prototyp. Dessutom blockerade en ny skruv rörelsen för armen.
Hur går man tillväga för att få till en fungerande visarställarm?
Det är ju inte direkt något vardagsarbete, man ser visarställarmar, man vet hur det ska fungera – när kronan dras ut skall muffhjulet skjutas fram mot visarställhjulet så att det går att ställa klockan, när kronan är intryckt ska armen kunna röra sig när kronan dras bakåt och ligga still när klockan dras. I detta verk ligger dessutom fjädringen i samma spår i muffhjulet – armen måste kunna röra sig fritt gentemot fjädern – i sina lägen.

Ett intressant problem som måste lösas!

Jag hade ingen hjälp av visarställarmen som satt i klockan.
Måste konstruera armen med hjälp av det som fanns kvar av originaldelar i verket.
Tog hjälp av CNC-fräsens koordinatsystem tillsammans med en USB-kamera. En kombination som jag aldrig jobbat med tidigare – modernt värre. Men väldigt smidigt.
Mäter upp med hjälp av datorn och CNC-maskinen. Tar en mängd olika viktiga mått.

I mitt ritningsprogram kunde jag sedan lägga in de måttuppgifter jag hade, jag kan även lägga in mina verkbilder som bakgrund. Det gjorde att jag kunde testa om ritningen på visarställarmen fungerade mot verklighetens verk.

Innan jag började med armen tillverkade jag skruven för visarställarmen. Med ritningen som förebild började jag fila!
(Letade efter bilder på hur en visarställarm från Leroy kunnat se ut, men det var för mig omöjligt att hitta bilder på tavelsidan…
Fick bli min tolkning av hur den eventuellt hade sett ut.)
I de flesta moderna klockor har regeln två eller tre lägen. För att få dessa lägen exakt sitter det ett stift på regeln, stiftet tar i tirettfjädern som har två eller tre försänkningar som skapar de rätta lägena. Det är också viktigt att fjädringen är så stark att det krävs ett visst tryck för att ändra mellan tex uppdrag och visarställning – kronan får ju inte hoppa in när du ställer klockan. I denna Leroy var konstruktionen en annan. Här var det visarställarmen som skulle hålla kronan i position. Det gjorde jobbet mycket svårare, fick ju inte fila bort för mycket material, då skulle det inte fungera som tänkt.

Nästa moment blir att tillverka en ny uppdragsaxel för att ersätta den gamla och rostiga. Hålet för uppdragsaxeln var väldigt slitet, så mycket att ingreppet mellan transmissionshjul och kronhjul blev för stort så att det kuggade över. Det brukar vara en ganska stor operation att fixa till. Har skrivit lite om detta förut bland annat här. Fick en idé om att göra ett foder. Problemet med foder är att det måste bli stabilt, det får inte lossna. Det är ganska stora krafter när klockan dras upp. Ofta använder man bara ett finger när man drar, det gör att det blir ensidigt tryck mot en sida av verkbottnen. Är då axeln sliten som i denna klocka, verkar axeln som en fil. Det är även känsligt med ingreppen. Det är ju ofta inte bara själva hålet som är slitet utan även de andra delarna i uppdraget brukar också vara mer eller mindre slitna.
Svarvade ett stålrör med en fläns som jag delvis filade bort. Gjorde sedan ett par spår i verkbottnen där jag kunde vrida in mitt foder. Det blev som en slags bajonettfattning, gjorde flänsarna svagt kilformade så att de skulle kilas fast när jag vred in röret. Det visade sig bli mycket bra och stabilt!
Även när jag fräst bort överflödigt material satt röret stabilt, det gick inte att rubba. Fjäderhusbryggan trycker dessutom emot fodret vilket skapar ytterligare stabilitet.

Efter allt arbete med att få ordning på uppdraget återstod nu bara att få igång själva urverket!
Efter rengöring och epilamisering satte jag ihop verket, fungerade det?
Naturligtvis inte! 🙂
Gången fungerade inte. Såg att det var bränd lack på en av hakstenarna, misstänkte att det var något fel här. Tog bort den brända schellacken, ställde in gången, satte dit ny fin schellack. Allt fungerade som det skulle!

Härligt att jobba med fina kvalitetsur av bästa sort!
Tyckte att detta inlägg blev lite långt så det kommer mer om företaget Leroy och minst en Leroyklocka till i framtida inlägg!

Jaccard-det är aldrig försent att ge upp! Eller?

Efter allt arbete med att svarva axlar och fixa till en haksten så fungerade äntligen klockan. Jag provade verket löst några dagar och den såg ut att gå både fint och hyfsat rätt. Det var dags att byta det skadade stenhålet i balanskloven.

Med stenen på plats var det åter dags att prova så att allt var som det skulle. I med balansen igen och klockan startade, men den stannade nästan med en gång!
Nej, inte mer fel nu…
Nu hade liverstenen hamnat på fel sida om gaffeln. Vad var fel?
Knivluften.
När balansstenen var bytt fanns inte längre det stora spelet i balansen som förmodligen ”förlät” gångfelet.

Vad är knivluft? Om du inte vet kommer här en liten förklaring.
Vi tittar på den översta skissen först – fig. 1.
De viktigaste punkterna är nr 4 som är själva kniven, nr 2 är säkerhetsrullen och nr 7 som är anslagsstiften.
För att kontrollera knivluften – luft eller spel – vrider du balansen så att liverstenen nr 5 kommer ur hakgaffeln så som bilden visar. Du försöker att flytta haken i sidled, då ska du känna/se en luft mellan anslagsstiftet nr 7 och säkerhetsrullen nr 2.
I fig. 2 syns detta tydligt – det är bara det att i detta fall och i Jaccards fall är lite för mycket luft. Dessutom var det ju problem med att ställa in gången som jag nämnde i förra inlägget, vilan var fel. Vilan med sin dragning gör att haken dras emot anslagsstiftet om gången är rätt inställd. Om vilan är liten eller om gånghjulstanden kanske till och med faller på hävytan då trycker kniven emot säkerhetsrullen. Då kommer kniven att hamna i den lilla urfräsningen nr 3 vilket gör att liverstenen nr 5 hamnar på fel sida om gaffeln – det vill säga på hornets utsida. Balansen blir helt blockerad – stopp.
Jag försökte att lösa problemet genom att sträcka kniven – fig. 3.

En annan viktig luft när man jobbar med gången är – hornluften. Du kontrollerar den genom att låta balansen hamna i sitt neutralläge, sedan vrider du balansen åt något håll samtidigt som du för haken från sida till sida. Genom att vrida balansen provar du luften mot liverstenen, tills du provar knivluft. Dvs tills liverstenen inte längre rör vid hakens horn.

Nästa problem, när kniven blev sträckt till korrekt längd och knivluften också var bra då hände det som jag försökt att illustrera i fig. 4. Då låste sig kniven i försänkningen nr 3. Då fick jag korta ner kniven tills blockeringen släppte – klockan startade!
Det var fortfarande ganska stor knivluft men klockan verkade fungera. Jag provade den i olika lägen i flera dagar utan att klockan stannade – skönt, allt fungerade. Dags att lämna klockan.

När jag lämnade den hade den stannat…
Samma fel som förut, balansen hade hoppat över. Fasen också. Den hade ju fungerat bra hos mig men när den fick röra på sig lite stannade den.
Dags att ge upp?
Jag föreslog för Eric att jag sätter balansen rätt och han sedan får ha den gående i sin samling och att inte bära eller använda klockan. Nej. Jag vill använda klockan blev svaret. Jag åkte hem och bröt ihop. 🙂

Hur skulle jag lösa detta? Haken är förmodligen utbytt vid något tidigare tillfälle och är ett nummer för liten. Tillverka en ny hake? Hitta en passande i skroten? Sträcka själva haken?  Byta till en större liverrulle? Hur hittar man en sådan med rätt storleksförhållande? Tillverka en ny liverrulle? Ganska krångliga och besvärliga lösningar. Finns det något enklare sätt?
Berättade för Eric om mina funderingar, han hade ett identiskt verk utan boett! Han hade även en klocka med ett liknande verk, bara att flytta över haken från något av dessa verk! Enkelt! Märkte ni det? ordet ”bara” igen…

Nej det gick inte heller, ingen passade. Jag hade funderat på en enkel lösning som gick ut på att trä över en ring på säkerhetsrullen som därmed skulle få större diameter. I alla fall värt att pröva. Svarvade till några små rullar i olika mått och började testa.

Så här såg min idé ut. Det verkar som om den fungerar – har ni hört den förut?
Men denna gången gjorde den verkligen det!
Bar den på mig några dagar, testade den i olika lägen, hade den i fickan i en vecka utan stopp! Var det verkligen sant att den fungerade?
Glömde att ta några bilder hur det såg ut i klockan, men filmade i alla fall.
Det är en riktigt bra funktion att kunna filma i slow-motion, du kan lätt kolla snabba förlopp, till exempel hur spiralen arbetar eller gången fungerar.
Det är inte lätt att se, men man kan i alla fall ana hur min ring skymtar och knivens luft.

Har lite fler bilder på verket och delarna. Allt är inte elände. 🙂

Detalj från boetten.

Så här skriver Eric om klockan:

Lipmann freres nr 1724

1904-1905 var ett unikt tävlingsår för observatoriet i Besançon. Det hölls nämligen två kronometertävlingar det året. Utöver den årliga tävlingen, Concours annuel, som endast var öppen för tillverkare med verksamhet i Besançon, så hölls en nationell tävling, Concours national, där tillverkare från hela Frankrike kunde delta. För den nationella tävlingen togs ett speciellt regelverk fram och ekonomiskt stöd för tävlingen och dess priser samlades in från ett stort antal sponsorer. Totalt deltog 127 kronometrar från 28 franska tillverkare i den nationella tävlingen, varav 56 erhöll ett gångcertfikat och 55 av dessa också ett pris. Trots den nationella tävlingen hölls också den årliga tävlingen och det uttrycktes en oro att den årliga tävlingen inte skulle få tillräckligt många deltagare. Oron var dock obefogad då Besançons urtillverkare lämnade in 103 kronometrar för tävlingen. Vissa kronometrar tävlade dock i båda tävlingarna. Av dessa 103 erhöll 93 ett gångcertifikat och 55 fick ett tillräckligt bra resultat, Mention très satisfaisante, för att delta i tävlingsdelen och få pris.

Lip (Lipmann frères) var en av de mest framgångsrika deltagarna i kronometertävlingarna på observatoriet och en sponsor av observatoriets tävlingar. De deltog i båda tävlingarna 1904-1905 med sin urverksserie 17xx som justerats av Alfred Jaccard. Alfred Jaccard är en av de mest kända reglörerna genom tiderna och under sin tid som reglör för Omega slog han många precisionsrekord. Samtliga urverk i 17xx-serien var 19 linjer i diameter (43 mm) och utrustade med Breguet-spiral med dubbla kurvor i palladiumlegering. I den nationella tävlingen vann följande serienummer priser: 1741, 1750, 1733, 1778, 1777, 1731, 1780 och 1794. För sina tre bästa kronometrar vann Lip det fjärde av fem seriepriser för tillverkare. Reglören Alfred Jaccard vann det tredje av fyra seriepriser för reglörer för sina tre bästa kronometrar. Två av kronometrarna han vann seriepriset för hade han justerat åt Lip. I den årliga tävlingen vann följande Lip-kronometrar priser: 1733, 1741, 1731, 1757, 1728, 1750, 13786, 1761, 1743, 1776 och 1724. Vissa av Lips kronometrar tävlade alltså i båda tävlingarna. I den årliga tävlingen vann Lip det första av tre seriepriser för tillverkare.

Mitt exemplar, Lip 1724, var en av kronometrarna som tävlade i den årliga tävlingen. I tävlingen fick den totalt 102 poäng och var då en av 55 kronometrar med Mention très satisfaisante som fick delta i tävlingsdelen. Av dessa 55 kom den på plats 48. Med sitt poängresultat vann också kronometern ett pris, nämligen ett enkelt omnämnande, Mention simple, som var det lägsta av de fem prisnivåerna.

Kronometern är ett utmärkt exempel på den typ av ur som Alfred Jaccard arbetade med under sin tid i Besançon.

Jaccard, ett hopplöst projekt! Eller?

Eric ser till att jag inte blir arbetslös. Fick ett fickur igen för renovering. Verket känner jag igen sedan förut.
Så här såg det ut när jag fick klockan.

Eric har satt lite Rodico i löpverket.

Med verket ute ur boetten kunde jag konstatera att balansaxeln var av. Eric hade satt lite Rodico som stopp i löpverket, när jag tagit bort hindret såg jag att löpverket kunde röra sig – hakstenarna såg konstigt uppböjda ut och var inte i ingrepp med gånghjulet. Nåväl tänkte jag, hakstenarna har säkert lossnat på grund av dålig shellack.
Jag beslöt mig för att svarva en ny balansaxel och att ställa in gången senare när balansen fungerade. Noterade att stenen i balanskloven var skadad.

När balansen var klar blev nästa moment att kolla vad som hänt med haken och hakstenarna. Det första jag lade märke till var att stenarna hade olika färg och form, de var uppböjda i en konstig vinkel. När haken var fri såg jag att även en tapp var avbruten. För att se hur gången fungerar måste jag ha en fungerande hake, alltså var det bara att svarva en ny hakbom!
Men det var något annat fel med haken (väl synligt om man är uppmärksam) som jag fortfarande inte sett – kan du se det jag inte såg?
På äldre ur är ofta hakbommen gängad och fastskruvad i haken, så också i detta fall. Har aldrig tidigare tillverkat en hakbom med gänga, så det skulle bli en ny utmaning. Valde att svarva i blåstål som är ett bra material med god hårdhet och som ger fina poleringar. Skulle mitt gamla gängsnitt hålla får att gänga i blåstål?
Bara att prova, det gick fint. Resten gick också bra, svarvade klart, anpassade tapparna i rullbänken, gängade fast i haken.

Nu skulle gången provas. Det var då jag upptäckte det jag inte tidigare lagt märke till.
Hakstenarna hade samma vinklar! Alltså två utgångsstenar!
Det var nu det började kännas riktigt hopplöst, vad var detta för klocka jag hade åtagit mig att fixa! Tog en låååång fika.
Tittade i ett par skrotade verk från gamla projekt och hittade en hake med välvda stenar precis som det ska vara. Stenen passade i spåret, bara att prova gången igen.

Ny ingångssten på plats, med rätt vinkel. Men något för lång, gången går inte igenom.

Då kom nästa problem. Hakstenen var för lång! Gången gick inte igenom.
Hakstenen måste kortas in. På riktigt fina ur förr i tiden anpassades alltid hakstenen till hakens spår, den skulle bottna. (Se min artikel om Halda.)
Den ”nya” hakstenen var skadad på den inre icke verksamma delen, jag valde att slipa bort det mesta av det skadade området.
Hur slipar man en haksten?
Studerade lite i min litteratur men fann inte så mycket. Jag hade slipat en haksten en gång tidigare när jag var på Patek Philippe, den gången var det också en gammal fin välvd haksten som hade slitage på den verksamma ytan. Fick göra det jag trodde var rätt och så som jag kom ihåg det. Ett stort problem när man slipar hårda material som glas och rubin är att det det går ur flisor på ”släppkanten”. För att förhindra detta slipar man först en facett på släppkanten innan du slipar den plana ytan.
Man brukar använda en kopparskiva som man applicerar diamantpasta på, med en stålrulle pressar man in diamantkornen i den mjuka kopparen. Sedan slipar man först med grov diamantpasta, sedan svarvar man ren kopparytan och tar en finare pasta och så vidare. Jag provade den finaste av mina diamantskivor som jag slipar sticklar på, och det fungerade fint. Med tanke på att det var bakänden på stenen som skulle slipas bort var ytnoggrannheten inte viktig. Men jag ville ju inte att kanten skulle flisa sig. Höll en trasa med fotogen mot skivan samtidigt som jag slipade. Det gick väldigt bra, inga flisor och ytan blev fin. Den duger dock inte som verksam yta, då hade jag fått använda diamantpasta på kopparskiva som jag beskrev ovan.

När jag satte in haken i klockan såg jag det inte var möjligt att ställa in gången, hur jag än gjorde var det omöjligt att få det helt rätt. Gången hade nästan ingen vila, dessutom var det inte lika på båda sidor. Provade ändå med balansen – klockan gick, dessutom med riktigt fin svängning. Provade den på bänken några dagar innan jag tänkte ge mig på att göra resten, bara att byta balansstenen som var sprucken och sedan rengöring. Eller? (Jag brukar säga till kunder att ordet ”bara” inte finns, nu fick jag smaka på min egen medicin…)
Mer om detta i del 2.

Chronomètre Officiel LIP 202438

Eric hade lyckats komma över ett löst LIP kronometerurverk. (Boetten hade förmodligen smälts ned av någon skändare för några futtiga kronor…) Han ville dels ha hjälp att sätta in verket i en boett samt försöka få igång urverket.

Erics LIP-verk

För jämförelse. Erics kronometerverk allra överst, under två verk med samma grundverk. Den ena klockan slaktades för att använda boetten till Erics kronometer. Notera att det står ”Chronomètre” på båda dessa urtavlor, dessa ur har dock aldrig testats som kronometrar. Kanske var det ändå klockor med en kvalité lite utöver det vanliga och som gick bättre än vardagsmodellerna från LIP. Bägge har i alla fall breguetspiral, den ena till och med i palladium.

Tänkte denna gång skriva om hur en kronometer definieras, lite om LIP samt förklara hur spiral och balans är konstruerade i just denna kronometer. Eric kompletterar med lite om hur testningen gick till. Till sist kommer en liten beskrivning om arbetet med verk och boett.

I det dagliga arbetet på verkstaden råkar man ibland på begreppet kronometer, kanske främst då en Rolex som behöver ses över. Att få in ett ur som är en officiellt certifierad kronometer som testats vid ett observatorium, dessutom en första klassens kronometer av det franska märket LIP hör definitivt inte till vanligheterna!

Lite om LIP.
Emmanuel Lipmann startade tillverkning av klockor 1867 i Besançon i Frankrike. Runt 1900 började man tillverka egenkonstruerade verk och 1908 registrerades namnet LIP. Fram till att det egentliga märket LIP lades ner 1976 (märket finns fortfarande) räknar man med att otroliga 10 miljoner klockor producerats vid fabriken. De flesta uren tillverkades för den franska marknaden. Man gjorde tidigt framgångsrika marknadsföringskampanjer.
Namnen Chronometre Lip och Chronometre de France registrerades i en period då gångnoggrannhet var ett viktigt säljargument. Ibland trycktes dessa namn på urtavlan för lura folk att tro att det var en kronometer man köpte. Men man tillverkade också många riktiga kronometrar som testades vid observatoriet i Besançon och som stämplades med huggormsstämpeln eller viperestämpeln (mer om den senare). Man vann flera priser för sina kronometrar. Nämnas bör också att en del kronometrar inte bär stämpeln
”Chronomètre ” på tavlan – leta efter huuggormsstämplen på verket.

För att sätta in LIP i ett sammanhang när det gäller testning, tävling och utdelande av medaljer för kronometrar vid observatoriet i Besançon kan man säga att sett till vunna guldmedaljer var de näst störst med 181 av totalt 598 utdelade guldmedaljer under perioden 1885-1913.

Hur förklarar man på ett enkelt sätt vad som är en kronometer?
Det går inte!
Ju mer man sätter sig in i ämnet desto mer förvirrad blir man.
Som du säkert kommer att märka när du läst detta inlägg är det ett virrvarr av observatorier, testprocedurer, siffror och formler, olika konstruktioner, reglörer, länder, tävlingar, medaljer med mera med mera…
Så det finns mycket att grotta ner sig i för den som är intresserad!
Här kommer jag bara att skriva om en bråkdel, annars blir det en hel roman.

I dagligt tal är en kronometer en klocka som går väldigt bra, håller tiden i stort sett perfekt. I England får en klocka endast kallas kronometer om den har kronometergång, i Tyskland, Frankrike, Schweiz och Italien har man kommit överens om att en klocka får kallas kronometer om den blivit godkänd i tester som utförts på ett officiellt sätt oavsett gångtyp.
Enkelt beskrivet finns det skeppskronometrar, fickur och armbandsur, men dessa kan i sin tur delas in i ytterligare kategorier.
I huvudsak kan man säga att det finns två typer av officiella tester dels vid ett observatorie dels vid en byrå. De viktigaste observatorierna är Besançon i Frankrike, Geneve och Neuchatel i Schweiz, Hamburg i Tyskland, Greenwich och National Physical Laboratory (Kew) i England och Milano i Italien. Av byråer kan nämnas det moderna och kanske mest kända i våra dagar – COSC, men även Poincon de Besançon kan nämnas. Det fanns byråer på flera ställen i Schweiz och Tyskland i de övriga länderna gjordes testerna vid de ovannämnda observatorierna (för att skapa ytterligare förvirring?).
Vad är det då som skiljer mellan de testerna vid ett observatorie och de gjorda vid en byrå?
Ett test vid ett observatorie är ett vetenskapligt test (med vetenskapliga metoder) som sker under en lång tidsperiod (tiden varierar, men kan vara upp till 60 dagar). Urverket prövas då i olika positioner samt i tre temperaturer. I ett protokoll införs sedan de olika mätvärdena och man räknar ut flera viktiga värden (till exempel om verket varit nedkylt till 4C i några dagar mäts skillnaden före och efter – hur väl den går tillbaka till värdet före mätningen samt det sekundära felet räknas fram).
Ett test vid en byrå är mycket enklare, det sker under en kort tidsperiod, man räknar fram enklare medelvärden. Testet är konstruerat så att de flesta uren skall klara testningen och är väl egentligen mest ett marknadsföringstricks, men det visar ju ändå att klockan har en hög gångnoggrannhet. Bland annat Rolex hade stor inverkan vid framtagandet av dessa test. Redan 1959 godkändes fler än 100000 klockor i Schweiz, hur många som godkänns idag kan man bara spekulera om. Så det är stor skillnad på kronometer och kronometer!
Ett vetenskapligt instrument eller ett någorlunda rättgående armbandsur.

Av ovanstående vet vi att det är noga att man skiljer på begreppet kronometer. Man kanske ska indela dem i observatoriekronometrar – som genomgått tester och godkänts vid ett observatorie och främst används till vetenskapliga studier och noggranna observationer främst vid positonsbestämning och officiellt certifierade kronometrar som godkänts av en byrå eller testinstitut efter ett enkelt test, främst avsedda för vanliga konsumenter med intresse för en mekanisk klocka som håller tiden bra.

Så till kronometern!
Balansen är en så kallad Guillaumebalans. Vid en första anblick ser den ut som en vanlig kompensationsbalans, man får titta efter extra noga. Skruvarna är större, tillverkade i guld, fyra av dem är i platina. Balansen är uppskuren en bit ut räknat från skänkeln – i detta fall två ”skruvbredder”. Men det som är det viktigaste, som man inte kan se med vanliga metoder är den speciella stållegeringen som ståldelen av balansen består av – den speciella Aniballegeringen som Guillaume uppfann. En kompensationsbalans kompenserar för temperaturförändringar. Den är tillverkad av bimetall – stål och mässing. Stål och mässing har olika temperturkoefficienter.
I värme expanderar stål mindre än mässing, det gör att den fria änden av balansen rör sig inåt, balansens verksamma diameter minskar vilket gör att klockan fortar, detta kompenserar för den minskade elasticiteten i spiralen vid en värmeökning. En vanlig, rätt justerad kompensationsbalans kompenserar för värmeskillnader på ett mycket effektivt sätt. Men en Guillaumebalans gör det i det närmaste helt perfekt! Den kompenserar nämligen även för det så kallade sekundära felet. Att kunna kompensera för det sekundära felet är nyckeln till att få en kronometer att gå exakt. Vad är då det sekundära felet?
När man testar en kronometers gång gör man det i kyla, rumstemperatur och värme, det brukar vara vid +4C, +20C och +35C. En vanlig kompensationsbalans kompenserar inte linjärt, det blir en topp någonstans. Då måste man ha någon form av hjälpkompensation som tar bort den toppen = det sekundära felet. Innan Guillaume kom på aniballegeringen (anibal är en förkortning av Acier au NIckel pour BALanciers) gjordes många snillrika konstruktioner av balanser, där den svenske urmakaren Victor Kullberg särskilt utmärkte sig.
Guillaume fick 1920 års nobelpris i fysik för sin forskning om legeringar mellan nickel och stål. Han upptäckte bland annat den märkliga legeringen invar som fått stor betydelse inom urmakeriet för den speciella egenskapen att den har ytterst liten värmeutvidgning.

För att en balans ska få kallas Guillaumebalans krävs kombinationen av en bimetallbalans med mässing och den speciella stållegeringen anibal tillsammans med en stålspiral. Så en Guillaumebalans är ett system som består av både spiral och balans tillsammans.

Något om spiralen.
Spiralen har något så ovanligt som två breguetkurvor!
En traditionell övre/yttre samt en inre kurva.
Idealiskt vore att spiralens inre fästpunkt skulle sitta exakt i centrum av balansaxeln. Men man är ju tvungen att klippa av det innersta av spiralen och fästa den i en spiralrulle, enkelt uttryckt kan man säga att den inre kurvan kompenserar för detta. Om man har både en inre kurva och en ytterkurva tar man helt bort det som kallas ”Caspari-effekten”, dvs ett fel som uppstår i förhållandet mellan spiralens inre och yttre fästpunkter – spiralrulle och ytterfäste. Man kan säga att man genom dessa två kurvor tar bort alla fel/nackdelar som spiralen har. Nackdelar? Den inre kurvan är på grund av sin ringa storlek mycket svår att böja till korrekt form – är formen fel blir istället gångfelet större. Så det krävs en mycket skicklig reglör för att få spiralen att fungera så bra som möjligt.
Fördelen med den vanliga breguetkurvan jämfört mot en planspiral är att breguetkurvan gör så att den plana/undre delen av spiralen rör sig koncentriskt när den arbetar. En planspiral rör sig excentriskt. En breguetspiral får därför inga tyngdpunkter eftersom spiralvarven alltid har förhållandevis samma avstånd sinsemellan. (Det gör det enkelt att kontrollera om kurvan har korrekt form, man vrider balansen så att spiralen drar ihop/utvidgar sig, sedan jämför man avstånden mellan varven, har spiralen rört sig excentriskt åt något håll är kurvformen fel och man får justera. Finns flera exempel på det här i min blogg.) Den plana spiralen är endast koncentrisk i vila, när balansen rör sig utvidgar den sig mer på ena sidan än den andra. Således väger spiralen mer på den sida som är mer utvidgad än den andra ihopdragna sidan. Det påverkar gången väldigt mycket. Man hittar bara dubbla kurvor i riktiga precionsur där man lägger ner mycket arbete och kostnader för att få klockan att gå så rätt som möjligt.
För att kunna böja en breguetkurva krävs att spiralen har två plan. Genom att göra två knän på spiralen får man fram dessa två plan. För att göra dessa knän är det enklaste och allra vanligaste sättet att man med ett verktyg trycker spiralen mot ett mjukt underlag. Man böjer då spiralen i höjdled. Det är lätt förstå att materialpåfrestningen blir stor vid dessa knän – sammanpressning och sträckning. Det gör att området vid knät blir oelastisk = negativ påverkan av spiralen. Om man (som på denna spiral) böjer spiralen sidledes blir övergången mjuk och fin, påfrestningarna blir inte lika stora och elasticiteten påverkas knappast. Man kan ibland se dessa kurvknän på finare ur, till exempel Patek Philippe.

Här syns tydligt skillnaden mellan planspiral och spiral med breguetkurva. Excentrisk resp koncencentrisk sammandragning/utvidgning.
De två undre raderna visar inre kurvor – kurva vid spiralrullen. De tre övre raderna visar ”vanliga” breguetkurvor där kurvan är uppböjd över den övriga spiralen – spiral i två plan.

Så här skriver Eric om sitt urverk och testningen i Besançon:
”Serienummerserien på ungefär 150 identiska urverk som innehåller nummer 202438, ~202385 till ~202535, testades som första klassens kronometrar på observatoriet i Besançon mellan 1910 och 1913. Av dessa vann 52 stycken guldmedalj. Nummer 202525 vann år 1912 ”Coupe Chronometrique” och kom då alltså på första plats av 232 testade urverk det året (med 259,4 Besançon-poäng av totalt 300 möjliga). Totalt testades 816 urverk från alla olika tillverkare mellan 1910 och 1913 på observatoriet i första klassen.

Testningen i första klassen, som alltså också var en tävling dit tillverkarna skickade sina bästa urverk, var 44 dagar lång över 8 perioder på 5-6 dagar vardera. Perioderna användes för att testa urverket i olika positioner och i olika temperaturer. Nedan detaljeras de olika perioderna:

och nedan de olika gränsvärdena för första klassen:

De testade urverken rangordnades efter resultat och ett poängsystem där ett urverk maximalt kunde få 300 poäng nyttjades (300 motsvarade en felfri gång och uppnåddes aldrig, men flera urverk nådde över 260).

Tillverkarna tilldelades också medaljer och priser efter urverkens poängresultat i den första klassen. Dessa utgjorde sedan en central del i tillverkarnas marknadsföring, då observatoriepriser var de bästa utmärkelserna urverk kunde få:

Det ur som vann, förutsatt att det också nådde över 250 poäng, gavs ”Coupe Chronometrique”.
Urverk med över 200 poäng gavs guldmedalj, urverk med över 175 poäng gavs silvermedalj och de över 150 poäng gavs bronsmedalj. Minst 100 poäng krävdes för ett certifikat utan pris.

Utöver den första klassen fanns också två andra klasser för fickur i Besançon, nämligen den andra och den tredje klassen. Klasserna var anpassade efter mer alldagliga fickur och testningslängden för den andra klassen var 31 dagar och för den tredje klassen 18 dagar. Den tredje klassen togs dock bort efter år 1913 och kom i någon mening att ersättas år 1931 av vad som kallades ”Poincon de Besançon”, men detta kommer inte att behandlas här.

Urverk som testades i någon av klasserna stämplades med en huggorms-stämpel, le poinçon à tête de vipère, som var ett bevis på observatoriets testning:

Huggormsstämpeln anger att det är en fransk kronometer.

Beroende på klassen som urverkets testats i placerades stämpeln olika:

Huggormsstämpelns placering anger kronometerns klass.

Värt att nämna är att testningssystemet på observatoriet i Besançon var skapat efter det som användes på det schweiziska observatoriet i Geneve och att systemen i stort var identiska (specifika skillnader kommer inte att behandlas här). I resultatlistor från Besançon finns urverkens poäng uträknade med tre metoder, nämligen Besançon-metoden (maximalt 300 poäng), den äldre Geneve-metoden (också maximalt 300 poäng, men med små skillnader i uträkningen av poäng) samt den nya Geneve-metoden (maximalt 1000 poäng). Att urverkens poäng fanns uträknade med de tre metoderna gjorde att det direkt gick att jämföra urverk testade i Besançon med de testade i Geneve. Gemensamma rekordlistor publicerades också, bland annat år 1910 där ett urverk från franska Leroy, nummer 7075, med 270,8 gamla Geneve-poäng, höll världsrekordet. Schweiziska Golay fils et Stahls nummer 30605 låg på andra plats med 270,1 poäng.

Vad gäller urverk 202438 från Lip, så vann det troligen silver- eller bronsmedalj år 1912. Dessa publicerades dock inte i den offentliga publikationen ”Bulletin Chronometrique” från observatoriet (endast guldmedaljörerna publicerades) och därför har inte urverkets exakta resultat kunnat hittas än.”

Man använde samma grundverk/konstruktion till många olika urverk av varierande kvalitet (se de översta bilderna). I detta fall har man förmodligen använt många standarddelar men utrustat verket med den speciella Guillaumebalansen. Det märks bland annat på att finishen på hjul, drivar och gångparti är av ordinär kvalité, olika typer av stenhål i verkbotten resp verksida. Man märker även att ytfinish och färg på mässingen skiljer på tavel- och verksida.
Därför köpte Eric in några vanliga LIP-fickur, tanken var att kronometerverket kunde passa i någon av boetterna eftersom grundverken var desamma.
Med lite modifikation passade verket i en av boetterna. Eftersom kronometerverket saknade uppdragsaxel och axeln från den slaktade klockan inte passade så bra var jag tvungen att fixa till en ny axel.

Hur går klockan nu efter reparationen?
Den går bra, men knappast som en första klassens observatoriekronometer!
Det är mycket som hänt med verket sedan den godkändes…

Vid bilderna finns mer förklaringar till reparationen. Klicka för att se större bilder.

I detta ämne finns mycket skrivet och det finns hur mycket som helst att läsa på nätet för den som söker. Dock finns inte så mycket på svenska.
Några tryckta källor:
Jendritski: Watch Adjustment, 1963
Leskininen: artiklar i Tid-Skrift Årgång 8 – 2016 och Årgång 10 – 2018.
Lundin & Borgelin: G.W.Linderoths Urfabrik, 2008
Sandström: Spiraler Balanser, 1963

Källor på nätet:

Klicka för att komma åt comptoir_lipmann.pdf

http://people.timezone.com/msandler/Articles/DownesLip/Lip.html

Movadofickur med lagerproblem

Lars hade bett mig se över ett Movadofickur. Vid en första snabbtitt verkade det ganska bra, förutom kronan som var sliten.
Efter lite närmare inspektion på verkstaden upptäckte jag att en lagersten var sprucken och spiralen såg konstig ut. Inga större problem så det var bara att sätta igång.

Letade först reda på en ny passande krona. Därefter tittade jag närmare på spiral och balans. Spiralen hade varvfel, breguetkurvan var inte plan samt formen var fel. Riktade först varvfelen – dvs avstånden mellan spiralvarven som inte var lika. Sedan gjorde jag kurvan plan, sist riktades kurvformen. Även ruckstiften justerades och riktades. Balanstapparna var lite slitna, de fick poleras i rullbänken.
Gaffeln på gånghaken hade märken av slitage, den fick poleras. Först fick jag dock ordna till min polerfil som är välanvänd och hade blivit sliten.
Sedan var det löpverkets tur, alla hjulen kontrollerades och tapparna inspekterades – centrumhjulet var rejält slitet. Det gick fint att polera bort alla märken men nu glappade hjulet lite väl mycket i hålet. Beslöt mig därför att sätta in en sten istället för det slitna mässingshålet.
En av stenarna i löpverket var sprucken. Tryckte sönder den med ett verktyg – öppnade fattningen – med det speciella verktyget – och satte in en ny sten av syntetisk rubin. Innan det fanns syntetiska lagerstenar använde man äkta rubin. Dessa stenar var mycket sköra och gick inte att pressa in, utan de sattes fast i en fattning. Med hjälp av svarv eller ett speciellt skärande verktyg gjordes fattningen. Man vek sedan över en kant – med hjälp av ett speciellt verktyg – över stenen. Jag brukar – om det finns möjlighet – att fatta in även den moderna stenen. Det ser snyggare ut och man förstör inte fattningen. Då mäter jag först öppningen och ser om det går att använda en standardiserad sten. Sedan pressar jag ner stenen med steninpressaren om det behövs annars viker jag bara över kanten med mitt verktyg.
En sten till balansen var lös, så den fattade jag om när jag ändå var i farten. Kronhjulet skars rent från grader så att det inte skulle skära in i verkbotten.
Allt klart för rengöring!

Verket sattes ihop och oljades – men verket gick väldigt dåligt…
Vad var fel?
Balansen svängde fint men helt plötsligt stannade den, jag kunde se att balansen stannade mot hakens horn. Felet låg någonstans i gångpartiet. Hur kontrollerar man gången?
Först tar jag bort balansen. Sedan kontrollerar jag gången. Tittar på hur gånghjulstanden faller mot vilytan på hakstenen – vila 1 – den skall vara ungefär en grad. Detta skall vara lika på båda stenarna. Sedan skall haken ha en liten fri väg innan den vilar mot anslagsstiftet – vila 2. Detta skall också vara lika på bägge sidor. Om det ser riktigt ut är gången OK.
Sedan sätts balansen tillbaka och hornluften kontrolleras. Man vrider då balansen så att liverstenen står mitt för hornet – då skall haken gå att röra litegrann. Också detta skall kontrolleras och vara lika på bägge sidor.
Sist kontrollerar jag knivluften. Då vrider jag balansen så att luften mellan den lilla rullen- säkerhetsrullen – på liverrullen och hakens säkerhetskniv kan kontrolleras. Den skall vara liten och samma på båda sidor. Här var felet! Alldeles för stor luft! Då är kniven för kort.
I detta fall bestod kniven av ett inpressat mässingsstift i haken. (Som det brukar.) Jag kunde med hjälp av en stans trycka kniven utåt mot hakgaffeln så att jag fick korrekt knivluft. Ibland går det att platta/sträcka kniven något, ibland får den bytas, ibland får hela haken bytas. Ett ovanligt fel som man undrar hur det uppstått? Hur har klockan gått innan? Detta justeras på fabriken, normalt behöver man som urmakare inte justera detta.

Nu gick klockan! Men hur? Bra men fel!
Plus 256 sekunder – över 4 minuter per dygn – lite väl mycket!
Fick ta fram mina reglagebrickor och tynga ner balansen något.
Några brickor senare gick klockan som den skulle – håller tiden fortfarande!

Som alltid när man lagar gamla klockor – överraskningar väntar!

 

Zenith kronometer 20 1/2”’ N.V.I.

Lars hade lämnat in ett fint Zenith rättidsur där gångreservsvisaren inte fungerade som den skulle. Enligt fabrikens egna uppgifter lämnade uret fabriken den 3 april 1933.

När klockan drogs upp stannade inte visaren på noll utan den fortsatte en liten bit. Efter några dagar hade visaren flyttats en rejäl bit.
Det visade sig att det var en skruv som var felaktig!
Det behövdes en skruv med hög skalle, den begränsar rörelsen för hjulet där upp -/nervisaren sitter. Även friktionen i det hjulet var felaktig. Efter en hel del test och kluring lyckades jag få det hela att fungera som det var tänkt. Fjädern var lite för lång, lyckaders få tag på en ny med korrekt längd.
Rättidsuret gjorde verkligen skäl för namnet – efter noggrann inruckning gick klockan i stort sett +/- 0 sek/dygn.


Förklaring till hur upp -/ nervisaren fungerar.
När klockans fjäder är helt nedgången står visaren på 40.
Man drar upp och ställer klockan med knappen på högersidan.
När knappen vrids börjar man dra upp fjädern, kron- och spärrhjul börjar röra på sig även spärren rör på sig. I spärren är en genomgående axel fäst – på den axeln är ett finger fäst 1. Fingret vrider sig åt höger och trycker mot armen 6. som gör att hjulet 3. kommer i ingrepp med hjulet 5. där upp- / nervisaren är fäst. Hjulet 2. sitter fast på fjäderhuskärnan, så när fjädern dras upp roterar hjulet 2. – eftersom fingret 1. aktiverat ingreppet mellan 3. och 5. kommer hjulet 5. att vridas. Vid 4. sitter en skruv (lite dold)som begränsar hjulet 5.:s rörelse mot ett finger. Fingret som sitter på undersidan av hjulet är fastnitat i röret som visaren sitter på. Eftersom röret är rörligt genom friktionen mot hjulet kommer alltid visaren att hamna i rätt position om  ingreppet vid 3. och 6. någon gång skulle falera.
När klockan går roterar timhjulet som vrider hjulen 6. och 5 tills klockan stannar eller dras upp igen. När visarna ställs lyfter stiftet 7. armen 5. så att inte upp- / nervisaren kan röra sig eftersom hjulet 3. då kommer i ingrepp med 5.

Några korta klipp på funktionen:

Rolex cal 1030, problem med tänderna. Del 2.

Fortsatte att fixa till ytterligare småfel. Nästan varje del i urverket bar spår av slitage.
De viktigaste jag gjorde nu var att dels svarva en ny visarväxelhjulstapp samt att lätta på visarfriktionen. Det var enkelt att svarva en ny tapp och pressa in den i verket. Visarfriktionen är en trögning på minutröret, som gör att du kan ställa visarna. Den måste vara lagom trög, går det för lätt då går klockan utan att visarna rör sig eller så slirar det vid t. ex. datumväxling och klockan blir efter. Går det för trögt kan det som har hänt med denna klocka inträffa. Det är också viktigt att den är riktigt smord.
Det kan vara svårt att lätta på visarfriktionen. Jag brukar trä på minutröret på en lämplig rivare. Sedan rullar jag den fram och tillbaka över filnageln. Meningen är att rivaren skall skära bort lite av inklämningen på minutröret som ger friktionen. Sedan provar jag om något hänt tills visarfriktionen är tillräckligt lätt.

Alla dessa småfel adderade ger ökad friktion vilket i sin tur påverkar både gång och uppdrag. Det var därför viktigt att ta bort så många som möjligt. Det ger förutsättningar för att klockan ska fungera bra även om man inte kan fixa till alla slitage t. ex. i slitna hjul och drivar. Men man bör ju ändå vara försiktig med sin klocka och använda den sparsamt.

Längst ner finns en liten filmsnutt på hur jag lättar visarfriktionen.

Klicka på småbilderna för att se större!